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ABSTRACT

Stochastic context-free grammars (SCFGs) are applied
to the problems of folding, aligning and modeling
families of tRNA sequences. SCFGs capture the
sequences' common primary and secondary structure
and generalize the hidden Markov models (HMMs) used
in related work on protein and DNA. Results show that
after having been trained on as few as 20 tRNA
sequences from only two tRNA subfamilies (mitochon-
drial and cytoplasmic), the model can discern general
tRNA from similar-length RNA sequences of other
kinds, can find secondary structure of new tRNA
sequences, and can produce multiple alignments of
large sets of tRNA sequences. Our results suggest
potential improvements in the alignments of the D- and
T-domains in some mitochdondrial tRNAs that cannot
be fit into the canonical secondary structure.

INTRODUCTION
Both computer science and molecular biology are evolving rapidly
as disciplines, and predicting the structure, function and folding
of macromolecules by theoretical or experimental means remains
a challenging problem. Determ'ining common or consensus
patterns among a family of sequences, producing a multiple
sequence alignment, discriminating members of the family from
non-members and discovering new members of the family will
continue to be some of the most important and fundamental tasks
in mathematical analysis and comparison of macromolecular
sequences (1, 2). Here we examine RNA from the perspective
of formal language theory using computational linguistics to
encompass vanous stuural phenomena observed in RNA rather
than any information it might encode. The general approach is
highly related to our earlier work on using Hidden Markov
Models (HMMs) to model protein families and domains (3, 4)
and to parse E.coli contigs into genes that code for protein
separated by intergenic regions (5).The HMM architecture we
used (4 ) captures the intuition of a family of related sequences
in terms of: a) a sequence of common positions each with its
own distribution over the residues; b) the possibility for either
skipping a position or inserting extra residues between consecutive

positions; and c) allowing for the possibility that continuing an
insertion or deletion is more likely than starting one. All the
parameters in the HMM, i.e., the transition probabilities and the
residue distributions, are learned entirely automatically from a
set of unaligned primary sequences. These features are also
present in the stochastic models used in this paper. Although in
principle HMMs could be used to describe a family of RNA
sequences, a major limitation ofHMMs is that all positions are
treated as having independent, non-interacting distributions.
Clearly, this is unsuitable for RNA because if two positions are
base-paired, the bases at these positions are likely to be highly
correlated.
Here we describe a method for analyzing a family of RNA

sequences that uses formal language theory to generalize HMMs
to model most RNA interactions. The technique is applied to the
problems of statistical modeling, multiple sequence alignment,
discrimination and prediction of the secondary structure ofRNA
families in general and tRNA in particular. Tools for performing
these functions are increasingly important as in itro evolution
and selection techniques produce greater numbers of synthesized
RNA families to supplement those related by phylogeny. To date,
two principal methods have been established for predicting RNA
secondary structure: phylogenetic analysis of homologous RNA
molecules (6, 7, 8) and thermodynamics (9, 10, 11, 12). When
several related sequences are available that all share a common
secondary structure, combinations of such approaches have been
used to obtain improved results (13, 14, 15, 16, 17, 18, 19, 20).
Several groups have enumerated schemes or programs to search
for patterns in proteins or nucleic acid sequences (21, 22, 23,
24, 25, 26, 27, 28). String pattern-matching programs based on
the UNIX grep search for secondary structure elements in a
sequence database (29, 30). If there is prior knowledge about
sequence and structural aspects of an RNA family, this can be
employed to create a descriptor (discriminating pattern) for the
family, which can then be used for database searching or
generating an alignment for the family. This has been
demonstrated most clearly for tRNA (31, 32, 33), where
approximate string matching proved to be important. Our method
of descriptor construction, multiple alignment and folding differs
markedly from conventional techniques because it builds a
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statistical model during rather than after the process of alignment
and folding, and the resultant model is itself a descriptor for the
RNA family.

Recently, Searls has argued the benefits of viewing the
character strings representing DNA, RNA and protein as
sentences derived from a formal grammar (34). The simplest kind
of grammar is a regular grammar, in which strings are derived
from productions (rewriting rules) of the forms S-aS and S-a,
where S is a nonterminal symbol which does not appear in the
final string, and a is a terminal symbol, which appears as a letter
in the final string. Context-free granmars (CFGs) allow a broader
class of productions which are crucial to model the base-pairing
structure in RNA. CFGs allow for productions of the form S-
ASU ,S-USA, S-GSC and S-C SG, which describe
the structure in RNA due to Watson-Crick base pairing. Using
productions of this type, a CFG can specify the language of
biological palindromes. Although CFGs cannot describe all RNA
structure, they can account for enough to make useful models.
(Currently, pseudoknots, base triples involving three positions,
and interactions in parallel [versus the more usual anti-parallel]
are not modeled.)
A stochastic grammar specifies a probability for each

production in the grammar and thus assigns a probability to each
string (sequence) it derives. Stochastic regular grammars are
equivalent to HMMs and suggest an interesting generalization
from HMMs to stochastic context-free grammars (SCFGs) (35).
Searls has proposed some analogs of stochastic grammars and
methods for creating the grammar from training sequences in
the form of costs and other trainable parameters used during
parsing (36, 37) (Searls, unpublished manuscript). We have
developed an integrated probabilistic framework for estimating
the parameters of an SCFG which may prove to be a simpler
and more effective approach. Our method is closely related to
the 'covariance models' (CMs) of Eddy and Durbin (29). CMs
are equivalent to SCFGs, but the algorithms we use for training
are different. An in-depth comparison of the two methods is given
elsewhere (38, 39).

In this paper, we focus on validating the use of SCFGs to model
RNA by applying them to tRNA. We create a statistical model
of tRNA by generating a SCFG incorporating base-pairing
information in a manner similar to our construction of an HMM
(4 ). This model is used to discriminate tRNA from other RNAs
of similar length, obtain a multiple sequence alignment and
ascertain the secondary structure of new tRNAs. The results
indicate that the RNA SCFG model appears to be a good
discriminator. A detailed examination of the SCFG-produced
secondary structures and alignments indicates that they agree
extremely well with previously determined ones (40) and in some
cases suggest improvements. Further details on our methods and
results can be found in (38, 39).

rewrite rules (or productions) that specify how sequences
containing nonterminals may be rewritten by expanding those
embedded nonterminals to new subsequences. The language
represented by the grammar is the set of all sequences of terminal
symbols that can be derived from the start symbol So by
repeatedly applying productions from P.

Let S denote any nonterminal symbol, a denote any terminal
symbol, and a denote any sequence of terminal and nonterminal
symbols. Each production has the form S-a, indicating that the
nonterminal S can be replaced by the sequence ax. See Figure
la for a small set of possible productions in a grammar
representing a set ofRNA sequences having a common structure.
These productions can be classified into four types. S-aSa
describe base-pairs (for example, S-GSC represents a G-C base-
pair). S-aS and S-a describe unpaired bases. S-S, called skip
productions, are equivalent to deletions, in that their use allows
no nucleotide to appear at that position in a multiple alignment.
These productions are also employed to omit substructures. For
example, adding the production S3- S4 to the grammar shown
in Figure la allows the option of deriving a string that does not
contain the right arm shown in Figure Id. Finally, S-SS
productions describe branched secondary structures. For
example, in the example grammar, the production S3- S4 Sg
derives a branched structure, the left branch derived by
productions starting from nonterminal S4, and the right branch
derived by productions starting from nonterminal Sq.
A derivation is a rewriting of a sequence using the rules of

the grammar. It begins with a sequence that consists only of the
start symbol So. In each step of the derivation, a nonterminal
from the current sequence is chosen and replaced with the right-
hand side of a production for that nonterminal. This replacement
process is repeated until the sequence consists of terminal symbols
only. A simple derivation is shown in Figure lb.

a. Productions

P = { So - Ss,
SI -CS2 G,
S2 -A S3 U,
S3 - S4 S9,
S4 - US5A,
S5 - C S6 G,
S6 - A S7,

S7 - G Ss,
Ss -G,
Sg -_ASo U,
Slo - G sll C,
sil - A S12 U,
S12- U S13,
S13- C

c. Parse tree

C A U C A G G G A A G A U C U C U U G

b. Derivation

So * Sl * CS2G * CAS3UG * CAS4SqUG
* CAUS5AS9UG =s CAUCS6GASgUG
* CAUCAS7GAS9UG * CAUCAGS8GAS5UG
* CAUCAGGGASgUG * CAUCAGGGAAS10UUG
* CAUCAGGGAAGS,5CTUG
* CAUCAGGGAAGAS12UCUUG

} CAUCAGGGAAGAUS13UCUUG
* CAUCAGGGAAGAUCUCUUG.

d. Secondary Structure

I S2

J,A ,,̂'/Q,,u _
All A7-%

A

I 5 5
/

I A%81\a,so5 1So

METHODS
Overview of SCFGs
A context-free language is simply a set of sequences of characters
drawn from an alphabet and specified through a representation
called a grammar. Formally, a grammar is composed of three
parts. The first is a finite alphabet E of terminal symbols. For
RNA sequences, this alphabet comprises the nucleotides A, U,
G and C. The second is a finite set N of nonterminal symbols
SI, ..., Sn and a special start symbol So. The third is a set P of

Figure 1. A simple CFG which may be used to derive a set of RNA molecules
including the specific example illustrated here, CAUCAGGGAAGAUCUCUUG.
a. A set of productions P which generates RNA sequences with a certain restricted
structure. S0 (start symbol), SI.......S13 are nonterminals; A, U, G and C are
terminals representing the four nucleotides. b. Application of the productions
P could generate the given sequence by the derivation indicated. For example,
if the production S1-C S2 G is selected, the string CS2G replaces S1 and the
derivation step is written S, e* CS2G. c. The derivation in b may be arranged in
a tree scture called aparse or derinzin tree. d. The physical secondary structure
of the RNA sequence is a reflection of the parse tree (or syntactic structure).
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For every derivation there exists a corresponding parse tree,
representing the syntactic structure of the sequence produced by
the derivation (see Figure lc). For RNA, this corresponds to the
physical secondary structure (solid lines in Figure Id). The
primary sequence of the derived RNA may be obtained by tracing
the letters from left to right along the frontier of the tree (dashed
line in Figure ld). The secondary structure can be seen in the
links between nucleotides that are derived from base-pairing
productions. Contiguous stretches of these base pairs are helices.
The nesting structure of the helices in Figure ld is apparent in
the derivation: reading the sequence left-to-right, the bottom two
helices are clearly nested within the topmost helix, giving the
nesting '((()'.(As mentioned above, CFGs can only represent
secondary structure with properly nested helices; they cannot
represent pseudoknots. When we model a family with
pseudoknots, these are currently ignored.)

In a SCFG, every production for a nonterminal S has an
associated probability value such that a probability distribution
exists over the set of productions for S. These probabilities are
used to define a probability for each parse tree. The probability
of a parse tree is the product of the probabilities of the production
instances applied to produce it. Thus in an SCFG, one can think
of a parse tree as the result of a stochastic process in which each
nonterminal symbol is replaced independently at random
according to a specified distribution over possible replacements
for that symbol. Further details on SCFGs can be found in the
tutorial paper (41).

Finding the best parse
CFGs are generally ambiguous because a grammar may give
more than one parse tree for a sequence and alternative parse
trees reflect alternative secondary structures (foldings). In a
SCFG, this ambiguity can be resolved by selecting the parse tree
with the highest probability, which we call the most likely parse
tree. There is a well-known dynamic-programming procedure
that, for SCFGs of the type we use, can determine the most likely
parse tree for a sequence s in time proportional to the cube of
the length of s (41). We call it the modified CYK algorithm,
because it is a variant of the CYK algorithm used to parse context-
free grammars (42). Finding the most likely parse tree using this
CYK variant is similar to the use of the Viterbi algorithm to find
the most likely path through an HMM (43). The algorithm is
also used in (29), and is related to other dynamic programming
algorithms used to fold RNA sequences (44, 45).
To predict the secondary structure for a sequence sin the family

modeled by an SCFG, we find the most likely parse tree for s
with the modified CYK algorithm, and then predict that s has
the secondary structure represented by that parse tree. The output
of the modified CYK algorithm is designed so we can display
this predicted secondary structure graphically using XRNA, an
X Windows-based program for editing and display of RNA
primary, secondary and tertiary structure (46). See (39) for
examples. The modified CYK algorithm can also be used to
obtain multiple sequence alignments just as the Viterbi algorithm
(43) can for HMMs (4). Key nonterminal symbols (called match
nonterninals) are identified that each derive either a single letter
or two base-paired letters in the consensus structure common to
the RNA family being modeled. Each match nonterminal is
associated with a column (or pair of columns) in the multiple
alignment that corresponds the position of its letter(s) in the
consensus structure. To produce the multiple alignment, we find

the most likely parse tree for each sequence s individually, and
then print s such that the letter(s) derived from each match
nonterminal that occurs in the parse tree of s appears in the
column(s) associated with that match nonterminal, inserting
dashes and deleting extra inserted characters as necessary.

Negative log likelihood of a sequence
A stochastic context free grammar G also defines a probability
distribution over all sequences that can be derived from G. The
probability of a sequence s is the sum of probabilities of all
possible parse trees for s that can be obtained from the grammar
G. This probability is denoted Prob (s G). It can be calculated
using a variant of the modified CYK algorithm known as the
inside algorithm, analogous to the forward algorithm used to
calculate the probability of a sequence given an HMM model
(43). This procedure is described in (41). The time for this
procedure is also cubic in the length of the sequence. We call
the quantity -log(Prob (s G)) the negative log likelihood (NLL)
score of the sequence s. The NLL score quantifies how well the
sequence s fits the grammar-how likely it is that the grammar
would produce the sequence s. Thus it is natural to use this score
to discriminate sequences in the family modeled by the grammar
from those not in the family. However, this raw NLL score is
too dependent on the test sequence's length to be used directly
in discrimination. Hence, it is normalized to produce a Z-score:
the difference between the NLL score of a sequence and the
average NLL score of a typical RNA sequence of the same length
not in the family, measured in standard deviations (4). We use
the Z-score to discriminate tRNA sequences from non-tRNA
sequences by choosing a Z-score cutoff and classifying sequences
above the cutoff as tRNAs. Although it is not clear that the
normalized scores actually exhibit Gaussian tails for non-tRNAs,
this kind of Gaussian approximation has worked for HMMs (4).

Estimating the parameters of an SCFG
There is a standard method for estimating the parameters of an
SCFG (i.e. the probabilities of the productions) from a set of
training sequences. This procedure is known as the
inside-outside algorithm (41 ). Just like the forward-backward
algorithm for HMMs, this procedure is an expectation-
maximization (EM) method for obtaining either maximum
likelihood or maximum a posteriori estimates of the grammar's
parameters. Because each iteration of the main loop in the

1. Start with an initial grammar Go.
2. Use grammar Go and the modified CYK algorithm to parse the raw
input sequences, producing a tree representation for each sequence
indicating which nucleotides are base-paired. This set of initial trees
is denoted To. Set Tald = 0 and T,ew = To.
3. While T,,,, #6 Told do the following:

3a. Set To4d = Tneu.
3b. Use Tad trees as input to the Tree-Grammar Reestimator
algorithm, which iteratively re-estimates the grammar parame-
ters until they stabilize. The grammar with the final stabilized
probability values is called new grammar Gn,.w.
3c. Use grammar G,,..,, and the modified CYK algorithm to parse
the input sequences, producing a new set of trees T7,,.

Figure 2. Pseudocode for the Tree-Grammar EM taining algorithm used to
estimate the parameters of a SCFG from unaligned taining RNA sequences. After
designing an appropriate rough initial grammar, training sequences are employed
only to refine estimates of the probabilities of the production used in the grammar.
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Number of Sequences
Data Set Type of tRNA Total ZeroTrain MT1OCY10 MT100 RandomTRNA618

ARCHAE archaea 103 0 0 0 50
CY cytoplasm 230 0 10 0 100
CYANELCHLORO cyanelle and chloroplast 184 0 0 0 100
EUBACT eubacteria 201 0 0 0 100
VIRUS viruses 24 0 0 0 10
MT mitochondria 422 0 10 100 200
PART III Part III 58 0 0 0 58

Totals 1222 0 20 100 618

Sequence Set ZeroTrain MT1OCY10

ARCHAE
CY
CYANELCHLORO
EUBACT
VIRUS
MT
PART III

94.87%
98.28%
96.22%
99.69%
96.83%
89.19%
55.98%

100.00%
99.76%
99.64%
99.86%
100.00%
98.33%
81.10%

MT100 RandomTRNA618

100.00%
99.89%
99.64%
99.86%
100.00%
98.91%
83.21%

100.00%
99.87%
99.79%
99.86%
100.00%
98.93%
83.00%

Figure 3. Details on the tRNA sequences used for training and testing the
grammars. Sequences in the first six groups can be fitted into a cloverleaf structure
but those in PART HI have 'unusual' secondary structures. This group include
tRNAs from mitochondria of parasitic worms (no T- or D-domain), mammalian

mitochondria (no D-domain), mitochondria of mollusc, insect and echinoderm
(extended anticodon and T-stems), single cell organisms and fungi and
Trypanosoma brucei. The ZeroTrain gmmmar is a control that has not been trained
on any sequences and only has prior information on tRNA. The three trained
grammars MTlOCY10, MT100 and RandomTRNA618 contain randomly chosen
subsets of sequences from the various groups (RandomnTRNA618 has all sequences

in PART l).

< D-donain > < Anticodon >< Extra >< T-domain >[
((((((((((( )))) ((((( === ))))) ((( ))))))

1 DC0380 -GCCAAGSTGGCACATTCCGGCCTAACGCGGCGGCCTGCAGAGCCGCTC----ATCGCCGGTTCAAATCCGGCCCTTGGCT---
2 DA6281 -GGGCGTGTGGCGTAGTC-GCT--AGCGCGCTCCCTTAGCATGGGAGAG----GTCTCCGGTTCGATTCCGGACTCGTCCA---
3 DE2180 --GCCCCATCGTCTAGA--GGCCTAGGACACCTCCCTTTCACGGAGGCG ----A- CGGGGATTCGCTTCCCCTGGGGGTA---
4 DC2440 -GGCGGCATAGCCAAGC--SGT-- AGGCCGTGGATCSCAAATCCTCTA ----TTCCCAGTTCIAATCTGGGTGCCGCCT---
S DKIS41 -GTCTGATTAGCGCAACT-GGC--AGAGCAACTCACTCTTAATCA5TsG ----GTTGGGSTTCGATTCCCACATCAGGCACCA
6 DA0260 -GGGCGAATAGTGTCAGC-GGG--AGCACACCAGACTTGCAATCTGGTA----G-GGAGGTTCGAGTCCCTCTTTGTCCACCA
7 DA3880 -GGGGCTATAGTTTAACT-GGT--AAAACGGCGATTTTGCATATCGTTA----T-TTCAGGATCGAGTCCTGATAACTCCA---
8 DH4640 -AGCTTTGTAGTTATGT-----AAAATGCTTGTTTGATATGAGTGAAAT------------------ TGGAGCTT---

I DC0380 -GCCAAGGUGGCAG.AGUUcGGccUAACGCGGCGGCCUGCAGAGCCGCUC---AUCGCCGGUUCAAAUCCGGCCCCUSGCU---
2 DA6281 -GGGCCCUGUGCGU.AGUC.GG. .UAGCGCGCUCCCUUAGCAUGGGAGAGG---UCUCCGGVUCGAUCCGGACUCGUCCA---
3 DE2180 -GCCCC-AUCGUCU.AGAG.GCc.UAGGACACCUCCCWUUCACGGAGGCG----ACGGGGAUUCGAAUUCCCCU-GGGGGU--A
4 DC2440 -GGCGGCAUAGCCA.AGC-.G..UAAGGCCGUGGAUUGCAAAUCCUCUA---WUCCCCAGStCAAAUCUGGGUGCCGCCSU---
5 DK1141 -SUCUGAUUAGCSC.AACU.G. .CAGAGCAACUGACUCUUAAUCAGUGGG---t5JGUGGGUUCGAJUCCCACAUCAGGCACCA
6 DA0260 -GGGCGAAUAGUGUcAGCG.G..-AGCACACCAGACUUGCAAUCUGGUA----GGGAGGGUUCGAGUCCCUCUUSGUCCACCA
7 DA3880 -GGSGCUAUAGSIU.AACU.GC .UAAAACGGCGAUUUUGCAUAUCGUJA----IUUUCAGGAUCGAGUCCUGAUAACUCCA---
8 DH4640 -AGCUUSGUAGUUU.A--U.GU. .AAAAUSCUGCt1UGUGAUAUGAGUGA--AAU---------------SUGGAGCUI---

Figure 4. Comparison of the alignment of several representative tRNAs produced
by trained grammar RandomTRNA618 (bottom) with that from EMBLTRNA
(40) (top). Parentheses indicate base-paired positions; = = = the anticodon;
and '[ ]' the 5' and 3' sides of the acceptor helix. For RandomTRNA618, capital
letters correspond to nucleotides aligned to the match non-terminals of the grammar,
lower case to insertions, - to deletions by sldp productions and . to fill characters
required for insertions. The sequences are taken from the seven groups in Figure
3 and are denoted by their databank codes: 1. ARcHAE (Habacriuwn cutirubnrn),
2. cy (Saccharomyces cerevisiae), 3. CYANELCHLORO (Cyanophora paradoxa),
4. CYANELCHLORO (Chlamydomonas reinhardti), 5. EUBACT (Mycoplasma
capricolum), 6. VIRuS (phage T5), 7. MT (Aspergillus nidulans) and 8. PART
(Ascaris suum).

procedure takes time cubic in the length of each training sequence,

we have developed an alternate, faster method to estimate the
parameters of our SCFGs, summarised in Figure 2. The inner
loop, Tree-Grammar Reestimator (Step 3b), requires folded RNA
sequences as training examples, rather than unfolded ones. Thus,
some tentative 'base pairs' in each training sequence have to be
identified before Tree-Grammar Reestimator can begin. To do
this, we design a rough initial grammar (Step 1) that may

represent only a portion of the base-pairing interactions, and parse

the unfolded RNA training sequences using this grammar to
obtain a set of partially folded RNA sequences (Step 2). Then
we reestimate the SCFG parameters using the partially folded
sequences and Tree-Grammar Reestimator (Step 3b); following
this we refold the sequences using the refined parameters (Step

Figure 5. Fraction of base pairs specified by the EMBLTRNA alignment that
matched in our grammars' predicted multiple alignments (ZeroTrain shows
statistics for the pre-training initial grammar).

3c). In this way, Tree-Grammar Reestimator can be used even
when precise biological knowledge of the base pairing is not
available. The Tree-Grammar Reestimator algorithm iteratively
finds the best parse for each sequence in the training set and then
readjusts the production probabilities to maximize the probability
of these parses. This takes only time linear in the sequence length
per sequence per iteration, with the number of iterations typically
on the order of 100. Step 3c takes time cubic in the length of
each sequence, but is typically executed only 2 or 3 times for
each sequence.

Data, training and testing
The sequences and alignments of 1477 tRNAs were taken from
the database of Sprinzl and co-workers (40) (referred to as
EMBLTRNA). Modified bases were converted to their
unmodified form. Removal of duplicate sequences left a total of
1222 unique sequences between 51 and 93 bases in length for
use in testing and training (Figure 3). For the discrimination
experiments, we generated 2016 non-tRNA test sequences from
the non-tRNA features (including mRNA, rRNA, and CDS) in
NewGenBank 75.0+ and GenBank75.0. We created 20 non-
tRNA sequences for each sequence length between 20 and 120
bases. (The original size of the data set was 2020 because we
discarded four anomalous tRNAs that appeared in this set of non-
tRNAs through unusual labeling in GenBank. We discovered
these when the trained grammars 'misclassified' them in
discrimination experiments.)
The Tree-Grammar EM algorithm was used to reestimate the

probability parameters in an initial grammar using varying
numbers of unfolded and unaligned tRNA training sequences
(Figure 3). For 100 training sequences, the run time was
approximately 3-4 hours on a Sun Sparc station 10/30. Finding
the most likely parse for each sequence given a grammar (Step
3c) required 2-3 CPU seconds for a typical tRNA sequence on
a DEC AXP 3000/400 running OSF/l.
We examined the ability of each of the four grammars,

ZeroTrain, MT1OCY10, MT100, and RandomTRNA618, to
perform three tasks: to discriminate tRNAs from non-tRNAs,
to produce multiple sequence alignments and to ascertain the
secondary structure of new sequences.

RESULTS
Multiple alignments and secondary structure
For each of the four grammars shown in Figure 3, a multiple
sequence alignment was produced for all 1222 tRNAs. Figure
4 shows results for the best trained grammar,
RandomTRNA618. The predicted alignment agrees substantially
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I I < D-domain > < Anticodon domain >< Extra >< T-domain >[ J
Base pairing((((((( (((()))) (((((
1 TRUSTED GGGCUAU-------- uaGCUCagcgguagagcgc--gCGCCC------- cugauaaGGGCG-----aggucUCUGG-uucaaauCCAGGAUAGCCCa---
MT100 GGGCUAU---------uaGCUC--agcgguagagcgcgCGCCC-----cugauaaGGGCG-----aggucUCUGG-uucaaauCCAGGAUAGCCCa---

2 TRUSTED GCCCCUA-------- uaGUUG---aaacacaacc--aAGAGC---------uuuucacGCUCU-----uaaguUUGAG-uuaaaauCUCAUAGGAGCu---
MT100 GCCCCUA---------uaGUUG----aaacacaac-caAGAGC---------uuuucacGCCUU-----uaaguUUGAG-uuaaaauCUCAUAGGAGCu---

3 TRUSTED GUUUCAU--------gaGUAU-----agcaGUAC--aUUCGG---------cuuccaaCCGAA-----agguuuuugu-aaacaacCAAAAAUGAAAUa---
NT100 GUUUCAU--------gaGUAU-----agcaGUAC--aUUCGG---------cuuccaaCCGAA------agguuuuuguaaacaacCAIAAAUGAAAUa---

4 TRUSTED aggacgu---------uaaaua---gauaagCUAU--gCCUAG--------uuacgguCUGGG---aagagag---------------ucgucuuu---
NT100 aggacgu--------uaaauag----auaagCUAU--gCCUAG--------uuacgguCUGGG---aagagag----------------- ucgucuuu---
NT1OCY10 ag-gacg-------uuaaauag----auaagCUAU--gCCUAG--------uuacgguCUGGG--aagagagu----------------- cguc-uuu---

5 TRUSTED aacgagu----------ucaua-----------aa--gCAAGU---------cuucuaaAUUUG------uucu-agg---uuaaau--ccugcucguuu---
MT100 aacgagu----ucauaaa-------------------gCAAGU------c--cuucuaaAUUUG------uucu--agg--uuaaauccu--gcucguuu---
RND618 aacga-g---uucauaaa----------------- gCAAGU---------cuucuaaAUUUG-------uuc-uagg--uuaaauccug-c-ucguuu---

6 TRUSTED AAGAAAG----------------auug--cAAGAk--------- cugcuaaUUCAU---gcuuccaug-uu--uaaaaaCAUGGCUUUCUUa---
MT100 AAGAAAG-------auug -------------------cAAGAA---------cugcuaaUUCAU------ gcuuccauguuuaaaaaCAUGGCUUUCUUa---

7 TRUSTED GAGAAAG------------------------cuca--caagaa--------- cugcuaacucau---gcccccaug-uc--uaacaaCAUGGCUUUCUCacca
MT100 GAGAAAG------cuca----------------c--caagaa--------- cugcuaacucau--- ---gcccccaugacuaacaaCAUGGCUUUCUCacca
RND618 GAGAAAG-------cuc------------------acaaga-------acugcuaacucaug-------cccccaugucuaacaaCkUGGCUUUCUCacca

8 TRUSTED -aaaucu-----------auu---- gguuuaccu---UAGUC---------cugcuaaGUCU ---aaggcuugcggu-ucaaucccguugaguuuuc----
MT100 aaaucua---------uuggu--------uu-acc--uUAGUC---------cugcuaaGUCUA----aaggcuugcgg-uucaaucccgaugaguuuuc---

9 TRUSTED GAAAUAU-----------guu------gauc-aag---AIAAG---------cugcuaaCUUUU----ucuuuaauggu-uuaauuccauuauauuucu-cca
MT100 GAAAUAU----------g-uug-------aucaa---gAAAAG---------cugcuaaCUUUU-----ucuuuaaugg-uuuaauuccauuauauuucucca
MTIOCY10 GAAAUAU---------gaug--------au-caa--gAAAAG---------cugcuaaCUUUU-----ucuuuaaugg-uuuaauuccauuauauuucucca

10 TRUSTED GkAAAAG--------- ucaug---gaggccaugg--gGUUGG--------cuugaaaCACGC-----uuugGGGGG-uucgauuCCUUCCUUUUUUg---
MT100 GAAAAAG---------ucaugg------aggccaugggGUUGG-------- cuugaaaCCAGC------uuugGGGGG-uucgauuCCUUCCUUUUUUg---

11 TRUSTED AAAUUA---------uauauu---uucuaguuug--aucgaa ----- aaugcuuuucgauuugaaaauuuaaau-uaaauuuAAGUUUAAUUUUc---
MT100 AAAAUUA--------- uauauuuucuaguuugauc--gaaaaugcuuuucgauuugaaaauuua------aauuaaauu.---u---uAAGUUUAAUUUUc---
MT1OCY10 AAAAUUAuauauuuucuaguuu---gaucgaaaau--gcuuuu---------cgauuugaaaau---uuaaauuaaauu------uAAGUUUAAUUUUc---

1 DI2620
2 DE5080
3 DG5000
4 DR4640
5 DS4680
6 DS5321
7 RS5880
8 DS5041

Sequence set
CYAJELCELORO
MT
MT
PART III
PART III
PART III
PART III
PART III

9 RS4800 PART III

10 DS5880 PART III

11 DA3681 PART III

Chloroplast
Animal mitochondria
Animal mitochondria
Parasitic worm mitochondrial tRIAs lacking T-domain
Parasitic worm mitochondrial tRIAs lacking D-domain
Mamalian mitochondrial tRNAs (anticodon GCU) lacking D-domain
Mammalian mitochondrial tRIAs (anticodon GCU) lacking D-domain
Mollusc, insect and echinoderm mitochondrial tRIAs with extended
anticodon and T-stems
Mollusc, insect and echinoderm mitochondrial tRNAs with extended
ant icodon and T-steus
Mammalian mitochondrial serine tRNAs/tDNA sequences with
anticodon UGA/TGA
Sequence for which the secondary structure is especially
unusual or is not established

Anticodon and Organism
GAT COLEOCHAETE ORBIC.
TTC STROJGYLOCEJ.PURP.
TCC ASTERINA PECTINI.
ACG ASCARIS SUUM
TCT CAEKORHABDI. ELEG.
GCT ROUSE
GCU BUMAN
GCT PARACENTROTUS LIV.

GCU AEDES ALBOPICTUS

TGA HUMAN

TGC TRYPANOSONA BRUCEI

Figure 6. Alignment of selected tRNAs (top) where the grammar-predicted alignments suggest (small) improvements over those in EMBLTRNA. EMBLTRNA
(59) is shown first, followed by alignments produced by MT100, MTlOCY10 and RandomTRNA618 (in cases where grammars produced identical alignments,
only one example is shown). Residues in lower case in helical regions denote positions where the EMBLTRNA and granunar alignments differ (unpaired nucleotides
are also depicted in lower case and are not shown aligned). Shown below is information on the sequences where 'Sequence set' is one of the groups listed in Figure
5. Using grammars MT100 and MTlOCY10 only sequences 1-3 and 9-10 can be discriminated from non- tRNA (Z-score > 5) whereas the rest cannot (Z-score
< 4). With RandomTRNA618 1-3 and 10 can be discriminated, 4-7 cannot and the remainder have Z-scores between 4 and 5.

with the EMBLTRNA alignment (40 ): boundaries of helices
and loops are the same and the major difference is the extra arm,
which is highly variable in its length and sequence.
To assess the accuracy of the predicted foldings, we computed

the percentage of base pairs specified by the EMBLTRNA
alignment that are also present in the secondary structure
predicted by the grammar (Figure 5). In the sequence sets
ARCHAE and VIRUS, every one of the three trained grammars
captures all the base pairing present in EMBLTRNA. In the
case of cY, CYANELCHLORO, EUBACT and MT, the agreement
between EMBLTRNA and grammar-predicted base pairings is
extremely good, but for PART III it is considerably poorer.
We examined in detail all cases where base pairing in

alignments produced by MT1OCY10, MT100, and
RandomTRNA618 had less than perfect agreement with base
pairs specified by EMBLTRNA (data not shown). One EUBACT,
two CYANELCHLORO, 12 MT and 30 PART II sequences were
'misaligned' by all three grammars. Disagreements with
EMBLTRNA are not distributed uniformly across the entire
length of the sequence but are confined to specific helices. In
some sequences, the misalignment merely reflects differences in
location of a gap between EMBLTRNA and grammar
alignments on one or both sides of a helix. Other instances are
examples of alternative, but equally plausible, base-pairing
schemes in the various helices.
However, there are cases where the grammar-generated
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alignments suggest (small) improvements over the EMBLTRNA
alignments, principally in the base pairing of the D- or T-helices.
A selection of such sequences is shown in Figure 6. A notable
example are the PART 11 mammalian mitochondrial tRNAs
lacking the D-domain, and mollusc, insect and echinoderm
mitochondrial tRNAs with extended anticodons and T-stems.
Here, the grammar-generated alignment suggests a readjustment
of residues in the 5' side of the T-helix, and flanking unpaired
residues, creating a T-stem with a greater number of
Watson -Crick base pairs than in EMBLTRNA.

Discriminating tRNAs from non-tRNAs
To test the ability of our grammars to discriminate tRNA from
other RNA sequences of similar length, for each of our trained
grammars, we computed the Z-score of every sequence in our
tRNA database and every sequence in our set of2016 non-tRNAs.
Although the highest Z-score of any non-tRNA is never much
greater than 4, we do not consider a tRNA sequence to be
succesfully discriminated from the non-tRNAs unless its Z-score
is greater than 5. For each grammar, Figure 7 shows the number
of tRNAs in each family that are successfully discriminated from
the non-tRNAs using this criterion and Figure 8 gives histograms
of the Z-scores for selected grammars.

Training on as few as 20 sequences yields a dramatic
improvement in discrimination over what is achieved with an
untrained grammar (compare histograms for the grammars
ZeroTrain and MTlOCY10, which was trained on ten cy and
ten MT sequences). MT1OCY10 is able to peri
between non-tRNA sequences and tRNA exclu
HI sequences (the top pair of Z-scores histol
ZeroTrain grammar fails. TheM11OCY10 E
well in the more difficult task of discriminatii
non-tRNA. Setting aside the PART HI sequer
is able to discriminate 399 out of 422 mitoch
from non-tRNA, performing nearly as well

Number of Sequences with Z-Scc
Above 5 Standard Dev. Between 4 and 5 Std. Dev.

Sequence Set ZT MTtO MTtOO R618 ZT MT10 MTtOO R618

ARCHAE 66 103 103 103 19 0 0 0
cY 135 230 230 230 53 0 0 0
CYANELCHLORO 61 184 184 184 52 0 0 0
EUBACT 160 201 201 201 30 0 0 0
VIRUS 16 24 24 24 4 0 0 0
MT (train) N/A 10 99 193 N/A 0 1 6
MT (test) 64 389 313 218 89 10 7 3
PART III 0 9 7 29 1 15 14 8
NON-TRNA 0 0 0 0 0 0 1 1

Totals 502 1150 1161 1182 248 25 23 18

Z-Scores for Boundar
ZeroTrain MTIOCY1O

Highest NON-TRNA 3.954 3.341
Lowest non-MT non-Part III tRNA 1.220 6.791
Group of the lowest tRNA CYANELCHLORO CYANELCHLORO

Figure 7. The partitioning of 3238 total sequences base
the four grammars (ZeroTrain is abbreviated as ZT, Ml
RandomTRNA618 as R618). The sum of each grammar
is 3238 (1222 tRNA and 2016 non-tRNA). The first gro
indicates the number of tRNAs correctly discriminated fr
grammar. (Because all three grammars perfecdy discrimi
sequences, only the results for MT tRNA sequences are p
discrimination results for the training and test sets.) The
Z-scores for the highest-scoring non-tRNA sequence anc
sequence (excluding the MT and PART Im tRNA sequen
to which the lowest-scoring tRNA belongs, for each gr

trained on many more tRNA sequences, MT100 and
RandomTRNA618. However, good discrimination of the PART
HI sequences from non-tRNA sequences is not achieved by any
of the grammars, even the RandomTRNA618 grammar, which
is trained on these sequences. Training improves discrimination
of some PART Im sequences, but half of these sequences still have
Z-scores below 5.
We examined all tRNA sequences that scored below the Z-

score cutoff of 5 by some trained grammar or that were
incorrectly aligned with respect to the EMBLTRNA alignment
by all three trained grammars (data not shown). A total of 29
PART Im tRNAs could not be discriminated from non-tRNA
sequences by either MT100, MT1OCY10 or RandomTRNA618
(8 of these have a Z-score between 4 and 5 in at least one
grammar). Interestingly, none of the three grammars were able
to successfully discriminate or align identically to EMBLTRNA
19 of the 29 PART Im tRNAs. All but three of these sequences
are mammalian and parasitic tRNAs that lack the D-domain.
However, the grammars are able to discriminate PART ImI tRNAs
lacking the T-domain. Overall, the trained grammars are able
to generalize well in that they require few training examples to
perform discrimination. Results from PART III tRNAs
demonstrate that a grammar gains discriminative power from
being trained on a large and varied sequence set.

DISCUSSION

fectly discriminate Formal language theory has been proposed as a means for
iding MT and PART examining RNA (39, 38, 34, 29). Here we have applied SCFGs
grams), where the to tRNA and shown that they provide a flexible and highly
Yrammar also does effective statistical method for solving a number ofRNA sequence
ng MT tRNA from analysis problems including discrimination, multiple alignment
nces, MT1OCY10 and prediction of secondary structures. We used our Tree-
iondrial sequences Grammar EM algorithm (38, 39) to derive several trained
as the grammars granmars from different training sets oftRNA sequences. These

grammars are able to discriminate regular mitochondrial tRNA
from non-tRNAs quite well. However, only 50% of the PART

DresBI tRNAs can be reliably distinguished from non-tRNAs by even
ZT MT10 MT0 D608 our most heavily trained grammars. Here 'reliably distinguished'
18 0 0 0 means having a score that is more than 5 standard deviations from
42 0 0 0 that of a typical non-tRNA of the same length. The majority of71 0 0 001 0 0 o the sequences that could not be discriminated are parasitic worm
4 0 0

N/A 0 0 1 and mammalian mitochondrial tRNAs lacking the D-domain. In
269 13 2 1 addition, these sequences cannot bealigned inthe same manner
57 34 37 21seuns be i

2016 2016 2015 2015 as EMBLTRNA. However, inspection of their alignments
2488 2063 2054 2038 indicates that a revision around the T-domain would create a T-

ry Sequences stem with a greater number of Watson-Crick base pairs than
MT100 RandomTRNA618 in EMBLTRNA. In contrast, PART II mitochondrial sequences
4.018 4.080 lacking the T-domain can be both discriminated from non-tRNAs
6C2Yl 8C9 and aligned identically to EMBLTRNA. Our results suggest

potential improvements in the alignments of the D- and T-
domains in mitochondrial tRNAs from parasitic worms and

d on their Z-scores by mammals that lack the D-domain, and mollusc, insect and
'lOCYlO as MT1IO and
's three 'Totals' entries echinoderm tRNAs with extended T-stems. This work
uping of four columns demonstrates the usefulness of SCFGs with tRNA sequences and
*om non-tRNA by each could prove useful in maintaining, updating and revising
nated all non-MTtRNA compilations of their alignments. Further classes of RNA
artitioned into separate sequences potentially appropriate to model using this method

d lowest-scoring tRNA include group I introns (47, 48), group II introns (49), RNAse
ices), listing the group P RNA (50, 51), small nuclear RNAs (52) and 7S RNA (signal
rammar. recognition particle RNA) (53).
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SCFGs may be valuable tools for representing an RNA family
or domain. The main difficulties in applying this work to other
families of RNA will be the development of appropriate initial
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grammars and the computational cost of parsing longer sequences.
The latter problem can only be solved by the development of
fundamentally different parsing methods, perhaps relying more
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on branch-and-bound methods (54) or heuristics. It is currently
not clear which approach will be best. The former problem might
be solved by the development of effective methods for learning
the grammar itself from training sequences. The work of Eddy
and Durbin is an important step in this direction (29). Their
method relies on correlations between columns in a multiple
alignment (20, 19, 13, 18, 17, 45) to discover the essential base-
pairing structure in an RNA family. Another approach would
be to use a method like that proposed by Waterman (13) to find
helices in a rough initial multiple alignment, use these helices
to design a simple initial grammar in a semi-automated fashion
using a high-level RNA grammar specification language, then
use the grammar to obtain a better multiple alignment, and iterate
this process until a suitable result is obtained (55).
Another important direction for further research is the

development of stochastic grammars for tRNA and other RNA
families that can be used to search databases for these structures
at the DNA level. In order to do this, the grammar must be
modified to allow for the possibility of introns in the sequence,
and the parsing method modified so that it can efficiently search
for RNAs that are embedded within larger sequences. Durbin
and Eddy have implemented the latter modifications in their tRNA
experiments and report good results in searching the GenBank
structural RNA database and 2.2 Mb of C.elegans genomic
sequence for tRNAs, even without using special intron models.
In our earlier work (56 ), we reported very preliminary results
on modifying tRNA grammars to accommodate introns. Since
there is significant 'information content' in tRNA at both the
primary sequence and secondary structure level, it might be
possible to scan database sequences for these consensus
sequences, perhaps using a conventional weight matix at low
threshold, and then use the grammar on isolated hits rather than
uniformly over the whole sequence. Although such a
preprocessing approach could prune the search space greatly
making the parsing more tractable, it may not be applicable to
RNAs more complex than tRNA. Overall, we see no
insurmountable obstacles in developing effective stochastic
grammar-based search methods, but predict that the main
practical problem will be dealing with the long computation time
required by the present methods.

Finally, there is the question of what further generalizations
of HMMs beyond SCFGs might be useful. The key advantage
of our method over the HMM method is that it allows us to
explicitly deal with RNA secondary structure. By extending
stochastic models of strings to stochastic models of trees, we can
model the base-pairing interactions of the molecule which
determine its secondary structure. This progression is similar to
the path taken by the late King Sun Fu and colleagues in their
development of the field of syntactic pattern recognition (57).
Modeling pseudoknots and higher-order structure would require
still more general methods. One possibility would be to consider
stochastic graph granmars (see the introductory survey by
Engelfriet and Rozenberg [58]) in hopes of obtaining a more
general model of the interactions present in the molecule beyond
the primary structure. If a stochastic graph grammar framework
could be developed that included both an efficient method of
finding the most probable folding of the molecule given the
grammar and an efficient EM method for estimating the
grammar's parameters from folded examples, then extensions
of our approach to more challenging problems, including RNA
tertiary structure determination and protein folding, would be

possible. This is perhaps the most interesting direction for future
research suggested by the results of this paper.
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